Because roots are equal so the descrminamt is zero
or $b^2(c-a)^2-4ac(b-c)(a-b) = 0$
becuase we need to show that $a,b,c$ are in HP so $\frac{1}{a} = p , \frac{1}{b} = q, \frac{1}{c} = r$ are in AP
now given relation is
$\frac{1}{q^2} (\frac{1}{r} - \frac{1}{p})^2- 4(\frac{1}{p})(\frac{1}{q})(\frac{1}{q}- \frac{1}{r}) (\frac{1}{p}- \frac{1}{q})=0 $
or $\frac{(p-r)^2}{p^2q^2r^2}$$ - 4(\frac{(r-q)(q-p)}{q^2r^2p^2})=0 $
or $(r-p)^2 -4 (r-q)(q-p) = 0$
Let $x= r-q$ and $y = q-p$
so we get $r - p = x + y$
or $(x+y)^2 - 4xy= 0$
or $(x-y)^2 = 0$
or $x = y$ or $q-p = r-q$ so $\frac{1}{a} = p , \frac{1}{b} = q, \frac{1}{c} = r$ are in AP and hence $a,b,c$ are in HP