Let $GCD(m,n) = k$ then we have
$m = ka$
$n = kb$
For some integers a and b where GCD(a,b) = 1
LCM = kab and GCD = k
So $ab = 120$
And $m +n = k(a+b)$
$m +n = 667 = 29 * 23$
So k can be $1,23,29, 667$
If $k =$1$ $a +b = 667$ and $ab = 120$ this is not possible
If $k = 667$ $a + b = 1$ so this is not possible
If $k = 23$ $a +b = 29, ab = 120$ so $a = 24,b =5$ or vice versa giving $(552,115)$ or $(115,552)$
if $k = 29$ $a +b = 23, ab = 120$ so $a = 15, b =8$ or vice versa giving$ (345,232)$ or $(232,345)$
So solution set is $\{(552,115), (115,552), (345,232), (232,325)\}$