Monday, May 25, 2009

2009/004) Prove the identity sin^2Acos^2B-cos^2Asin^2B = sin^2A-sin^2B

sin^(2)Acos^(2)B-cos^(2)Asin^(2)B
= sin ^2 A(1- sin ^2 B) - cos^(2)Asin^(2)B
= sin ^2 A - sin ^2 A sin ^2 B - cos^(2)Asin^(2)B
= sin ^2 A - sin ^2 B(sin ^2 A + cos ^2 A)
= sin ^2 A - sin ^2 B

2009/003) factor (x-y)^5+(y-z)^5+(z-x)^5

if a + b+ c = 0

then (a+b)^5 = -c ^5

so a^5 + 5 a^4 b + 10 a^3 b^2 + 10 a^2 b^3 + 5 a^4 b + b^5 = - c^5

so a^5 + b^5 +c^5 = - (5 a^4 b + 10 a^3 b^2 + 10 a^2 b^3 + 5 a^4 b)
= -5 ab(a^3 + 2 a^2b + 2 a b^2 + b^3)
= - 5 ab((a+b)^3 - (a^2 b + ab^2)
= - 5ab((a+b)3 - ab(a+b))
= - 5ab(a+b)((a+b)^2 - ab)
= 5abc(c^2-ab) as a+b = - c

as (x-y)+ (y-z) + (z-x) = 0

we get 5(x-y)(y-z)(z-x)((z-x)^2 - (x-y)(y-z))
= 5(x-y)(y-z)(z-x)(z^2 + x^2- 2xz -xy + xz +-y^2 -xy)
= 5(x-y)(y-z)(z-x)(x^2+y^2+z^2 - xy - yz - zx)