Saturday, April 21, 2012

show that √(1 + √(-3)) + √(1 - √(-3)) = √(6)

Let y = √(1 + √(-3)) + √(1 - √(-3))

so y^2 = (√(1 + √(-3)) + √(1 - √(-3)))^2
= (1 + √(-3)) + (1 - √(-3)) + 2 √((1 + √(-3))(1 - √(-3)))
= (1 + √(-3)) + (1 - √(-3)) + 2 √(1 - (-3)))
= 6

so y = √(6) as LHS is positive

hence √(1 + √(-3)) + √(1 - √(-3)) = √(6)

2 comments:

  1. How do you get from
    This (√(1 + √(-3)) + √(1 - √(-3)))^2

    to this? (1 + √(-3)) + (1 - √(-3)) + 2 √((1 + √(-3))(1 - √(-3)))

    How do you come to that step? Can you show me each little part squaring the top term?

    ReplyDelete
  2. using (a+b)^2= a ^2 + b^2 + 2ab
    and a= √(1 + √(-3)
    b = √(1 - √(-3)))

    you get a^2 = 1 + √(-3)
    b^2 = 1 - √(-3)
    2ab = 2 √((1 + √(-3))(1 - √(-3)))
    is it not obvious

    ReplyDelete