A> 1/2
B> 2^(1/(2^(1/2)))
C> 2^(1/2)
D> 2^(1-(1/(2^(1/2))))
B> 2^(1/(2^(1/2)))
C> 2^(1/2)
D> 2^(1-(1/(2^(1/2))))
Solution
by AM GM inequality we have
(a+b) /2 >= sqrt(ab)
so 2^ sin x + 2^ cos x >= 2 sqrt(2^( sinx + cos x))
sin x + cos x = sqrt(2) ( sin x cos pi/4 + cos x sin pi/4) = sqrt(2) sin (x+pi/4)
lowest value is - sqrt(2)
so 2^ sin x + 2^ cos x >= 2 sqrt(2^-(sqrt(2)) = 2^(1-(1/2^(1/2))
hence D
(a+b) /2 >= sqrt(ab)
so 2^ sin x + 2^ cos x >= 2 sqrt(2^( sinx + cos x))
sin x + cos x = sqrt(2) ( sin x cos pi/4 + cos x sin pi/4) = sqrt(2) sin (x+pi/4)
lowest value is - sqrt(2)
so 2^ sin x + 2^ cos x >= 2 sqrt(2^-(sqrt(2)) = 2^(1-(1/2^(1/2))
hence D