$f''(x) = 12 x +8$
so integrate to get
$f'(x) = 6x^2+8x + C$ where C is constant of integration
$f'(-1) = 6 = 8 + C = 0$ or C = 2
so f$'(x) = 6x^2+ 8x + 2$
integrate once more
$f(x) = 2x^3 + 4x^2 + 2x + D$
$f(-1) = -2 + 4 - 2 + D = 0$ or D = 0
so $f(x) = 2x^3+ 4x^2 + 2$