We shall prove the same by induction
For n = 1 we have (2+\sqrt{5} )^1 + (2-\sqrt{5} )^1 = (2+\sqrt{5} ) + (2-\sqrt{5} ) = 4
For n = 2 we have (2+\sqrt{5} )^2 + (2-\sqrt{5} )^2 = (4+4\sqrt{5} + 5) + (4-4\sqrt{5} +5) = 18
Let us assume that it is true for k upto n. We shall show that it is true for k = n+1
below we shall keep power 1 for clarity.
Let T_n = (2+\sqrt{5} )^n + (2-\sqrt{5} )^n
We have T_nT_1 = ((2+\sqrt{5} )^n + (2-\sqrt{5} )^n) ((2+\sqrt{5} )^1 + (2-\sqrt{5} )^1)
= (2+\sqrt{5} )^{n+1} + (2+\sqrt{5} )^n * (2-\sqrt{5} )^1 + (2-\sqrt{5} )^1(2-\sqrt{5} )^n + (2-\sqrt{5} )^{n+1}
= ((2+\sqrt{5} )^{n+1} + (2-\sqrt{5} )^{n+1})+ (2+\sqrt{5} )^n * (2-\sqrt{5} )^1 + (2-\sqrt{5} )^1(2-\sqrt{5} )^n
=T_{n+1}+ (2+\sqrt{5} )^n * (2-\sqrt{5} )^1 + (2-\sqrt{5} )^1(2-\sqrt{5} )^n using definition
=T_{n+1}+ (2+\sqrt{5} )^{n-1} * (2+\sqrt{5} ) * (2-\sqrt{5} )^1 + (2-\sqrt{5} )^1 (2-\sqrt{5} )(2-\sqrt{5} )^{n-1}
=T_{n+1}+ (2+\sqrt{5} )^{n-1} * (-1) -1 * (2-\sqrt{5} )^{n-1} using product
=T_{n+1} -1 ((2+\sqrt{5} )^{n-1}+ (2-\sqrt{5} )^{n-1} using T
=T_{n+1} - T_{n-1}
Or T_{n+1} = T_nT_1 + T_{n-1}
or T_{n+1} = 4 T_n + T_{n-1} using the value of T_1'
so if it is integer for value upto n then it is integer for k = n+1
Proved