Sunday, October 19, 2008

2008/005) rational no. p,q and r satisfying the property that pq+qr+rp=1

rational no. p,q and r satisfying the property that pq+qr+rp=1
prove that (p^2+1)(q^2+1)(r^2+1) square of a rational number

so p = (1-qr)/(q+r)
if we chose q = tan A and r = tan B

we get
1/p = (q+r)/(1-qr) = (tan A + tan B)/(1- tan A tan B) = tan (A+B)

or p = cot (A+B)

now
(p^2+1) (q^2+1)(r^2+ 1) = sec^2 A sec ^2 B cosec^2 (A+B)
= (sec^2 A sec^B)/ sin^2 (A+B)

this is square of reciprocal of sin (A+B) cos A cos B
sin (A+B) cos A cos B
=( sin A cos B + cos A sin B)cos A cos B
= sin A cos A cos ^2B + cos^2 A sin B cos B
= tan A cos ^2 A cos ^2 B + tan B cos ^2 A cos ^2 B
= (tan A + tan B)/(sec^2 A sec ^2B)
= (tan A + tan B)/(1+ tan ^2 A)(1+ tan ^2B)

so (p^2+1) (q^2+1)(r^2+ 1) = ((1+ tan ^2 A )(1+tan ^2B)/(tan A + tan B))^2

if tan A and tan B that is q and r are rational then

((1+ tan ^2 A )(1+tan ^2B)/(tan A + tan B)) is rational and so (psquare +1)(qsquare +1)(rsquare +1) is the square of a rational number

No comments: