To prove
Cos pi/7 + cos 3pi/7 + cos 5pi/7=1/2
let z = cos pi/7 + i sin pi/7
z^7 = cos pi + i sin pi = - 1
so z^7+1 = 0
(z+1) (z^6-z^5+z^4 - z^3+z^2 -z + 1) = 0
as z is not - 1 so
z^6-z^5+z^4 - z^3+z^2 -z + 1 = 0
so z^6-z^5+z^4 - z^3+z^2 -z= -1
so z+z^3+ z^5 = 1 + (z^2+z^4+z6)
equating the real part
cos pi/7 + cos 3pi/7 + cos 5pi/ 7 = -1 - (cos 2pi/7+ cos 4pi/7 + cos 6pi/7)
but cos 6pi/7 = - cos(pi-6pi/7) = - cos pi/7
cos 4pi/7 = - cos 3pi/7
cos 2pi/7 = cos 5pi7
so
cos pi/7 + cos 3pi/7 + cos 5pi/ 7= 1 - (\cos pi/7 + cos 3pi/7 + cos 5pi/ 7)
or 2 (cos pi/7 + cos 3pi/7 + cos 5pi/ 7) = 1
or cos pi/7 + cos 3pi/7 + cos 5pi/ 7 = 1/2
2 comments:
Thankyou Mr.. it is helpfull for me
nice work
thank you very match
Post a Comment