we know
(a^2-b^2) ^2 >= 0
or a^4+b^4 >= 2a^b^2
similarly
b^4 + c^4 >= 2 b^2 c^2
c^4+ a^4 >= 2 c^2 a^2
adding all 3 above and deviding by 2
a^4+b^4+c^4 >= (a^2b^2+b^2c^2 + c^2 a^2) ... 1
now a^2+c^2 >= 2ac
multiply by b^2 on both sides
b^2(a^2+c^2) >= 2b^2ac -- 2
similarly
a^2(b^2+c^2) >= 2a^2bc ... 3
and c^2(a^2+b^2) >= 2c^2ab .. 4
adding (2) (3) and (4) we get
2(a^2b^2+b^2c^2+c^2a^2) >= 2abc(b+a+c)
or (a^2b^2+b^2c^2+c^2a^2) >= abc(a+b+c) ...5
from 1 and 5 we get a^4+b^4+c^4>=abc(a+b+c)
proved
No comments:
Post a Comment