What is the maximum value of 5 sin x + 12sin y , given that 5cos x + 12 cos y = 13 ?
we start with
(5 sin x + 12sin y)^2 + (5cos x + 12 cos y)^2 = 169 + 120 cos(x-y)
or (5 sin x + 12 sin y)^2 + 169 = 169 + 120 cos(x-y)
or 5 sin x + 12 sin y = 120 cos(x-y)
5 sin x + 12 sin y = sqrt( 120 cos(x-y))
this is maximum when cos(x-y) is maximum
theoritically cos(x-y) is maximum = 1 when x = y
but is is possible under given case that is x =y satisfies
then we get
5 cos x + 12 cos x = 13 so cos x = 13/17
it is possible
so maximum value of 5 sin x + 12sin y = sqrt(120)
No comments:
Post a Comment