1/(x+1) + 2/(x^2+1) + 4/(x^4+1) + (2^2n/(x^2n + 1)
we realise that 1/(x+1) - 1/(x-1) = -2 /(x^2-1)
so add and subtract 1/(x-1) to get
1/(x-1) + (1/(x+1) - 1/(x- 1) + 2/(x^2+1) + 4/(x^4+1) +.... (2^2n/(x^2n + 1)))
= 1/(x-1) + (-2/(x^2-1)+ 2/(x^2+1) + 4/(x^4+1) + (2^2n/(x^2n + 1)))
= 1/(x-1) + (-4/(x^4-1)+ ... + (2^2n/(x^2n + 1)))
applying repeatedly we get 2^(4n)/(x^4n+1) + 1/(x-1)
No comments:
Post a Comment