cosα + cosβ + cosγ = 0
=>cosα + cosβ = - cosγ
=> (cosα + cosβ)^2 = cos^2γ
=> cos^2α + cos^2β + 2 cosα cosβ = cos^2γ
=> 2 cosα cosβ = cos^2γ - (cos^2α + cos^2β) ... 1
similarly 2 cosβ cosγ = cos^2 α - (cos^2β + cos^2γ) ...2
and 2 cosγ cosα =cos^2β- (cos^2γ + cos^2 α) .. 3
adding (1) (2) and (3)
we get 2( cosα cosβ + cosβ cosγ + cosγ cosα) = - (cos^2 α + cos^2β + cos^2γ) ... 4
similarly from sinα + sinβ + sinγ = 0 replacing cos with sin we get
2( sin α sin β + sin β sin γ + sin γ sin α) = - (sin ^2 α + sin ^2β + sin ^2γ) ... 5
adding (4) and (5) and reordering we get
2((cosα cosβ + sin α sin β) + (cosβ cosγ + sin β sin γ) + (cosγ cosα + sin γ sin α)) = - 3
or
2(cos(α-β) + cos(β-γ) + cos(γ - α)) = - 3
or cos(α-β) + cos(β-γ) + cos(γ - α) = - 3/2
No comments:
Post a Comment