x^2 + x + 1 = 0
so x^2 + 1 = - x
(x + 1/x) = -1
cube both sides
(x^3 + 1/x^3) + 3(x+ 1/x) = - 1
or (x^3 + 1/x^3) - 3 = - 1
or (x^3 + 1/x^3) = 2 hence
(x^3 + 1/x^3)^3 = 8
so x^2 + 1 = - x
(x + 1/x) = -1
cube both sides
(x^3 + 1/x^3) + 3(x+ 1/x) = - 1
or (x^3 + 1/x^3) - 3 = - 1
or (x^3 + 1/x^3) = 2 hence
(x^3 + 1/x^3)^3 = 8
No comments:
Post a Comment