we get
bc = a^x ..1
ca = b^y...2
ab = c ^z ...3
from (3)
c^(xyz) = (ab)^(xy)
= a^(xy) * b^(xy)
= (a^x)^y) * (b^y)^x)
= (bc)^y ( ac)^x ( from 1 and 2)
= c^y c^x ( b^y)(a^x)
= c^y c^x (ac) (bc)
= c^y c^x c^2(ab)
= c^ x c^y c^2 c^z
= c^(x+y+z+2)
hence xyz = x + y + z + 2 or
xyz - x - y - z = 2
bc = a^x ..1
ca = b^y...2
ab = c ^z ...3
from (3)
c^(xyz) = (ab)^(xy)
= a^(xy) * b^(xy)
= (a^x)^y) * (b^y)^x)
= (bc)^y ( ac)^x ( from 1 and 2)
= c^y c^x ( b^y)(a^x)
= c^y c^x (ac) (bc)
= c^y c^x c^2(ab)
= c^ x c^y c^2 c^z
= c^(x+y+z+2)
hence xyz = x + y + z + 2 or
xyz - x - y - z = 2
Alternatively we can solve as below
\
multiply (1) by a
abc = a^(x+1) => a = (abc)^(1/(x+1) ..4
similarly
b = (abc)^(1/(y+1) ..5
c = (abc)^(1/(z+1) .. 6
multiply to get
abc = (abc)^(1/(x+1) + 1/(y+1) + 1(z+1))
or (1/(x+1) + 1/(y+1) + 1(z+1)) = 1
or (y+1)(z+1) + (x+1)(z+1) + (x+1)(y+1) = ( x+1)(y+1) (z+1)
or yz + y + z + 1 + xz + z + x + 1 + xy + x + y + 1 = xyz +
xy + yz + xz + x + y+ z + 1
or x+y + z + 2 = xyz