we have a 3+b^3–a^2b–b^2a
=a 3−a^2b–b^2a+b^3
= a 2(a−b)−b^2(a−b)=(a^2−b^2)(a−b)=(a+b)(a−b)^2>=0
Hence
a 3+b^3>=a^2b+b^2a
Multiply by 3 and adda 3+b^3 on
both sides
4(a^3+b^3)>=a^3+ b^3+3(a^2b+b^2a)>=(a+b)^3
4(a^3+b^3)>=(a+b) .. (1)
Similarly
4(b^3+c^3)>=(b+c) ...
(2)
4(c^3+a^3)>=(c+a) ...(3)
Adding (1), (2), (3) we get the result
=
Hence
Multiply by 3 and add
Similarly
Adding (1), (2), (3) we get the result
No comments:
Post a Comment