Loading [MathJax]/extensions/TeX/mathchoice.js

Tuesday, November 29, 2016

2016/108) If S_n is sum of n terms of a GP show that S_n(S_{3n} - S_{2n}) = (S_{2n} - S_{n})^2

we have let 1st term be a and ratio be t
so S_p = a\frac{t^{p}- t}{t-1}
we have LHS
= (a\frac{t^{n}- 1}{t-1})(\frac{a(t^{3n}- 1) -  a(t^{2n}- 1)}{t-1}
= \frac{(at^n-1)(a(t^{3n} - t^{2n}}{(t-1)}^2
= \frac{a^2t^2(t^n-1)^2}{(t-1)^2}
=(\frac{at^n(t^n-1)}{t-1})^2
RHS = (S_{2n} - S_{n})^2 = (\frac{at^{2n-1} - 1 - at^n + 1}{t-1})^2 =    (\frac{at^{2n}-at^n}{t-1})^2=LHS

No comments: