Loading web-font TeX/Math/Italic

Sunday, March 5, 2017

2017/006) if x= a + b y = aw+bw^2 and z= aw^2+ bw then show that x^3+y^3 + z^3 = 3(a^3+b^3) and x^2+y^2 + z^2 = 6ab

We have x+y+z = a(1+w+w^2) + b(1+w+w^2) = 0
so x^3 + y^3+ z^3 = 3xyz = 3(a+b)(aw+bw^2)(aw^2+bw) = 3(a+b)(a^2 w^3 + abw^2 + abw^4 + b^2w^3) = 3(a+b)(a^2 + ab(w^2+ w^4) + b^2) = 3(a+b)(a^2 + ab(w^2+w) + b^2)
= 3(a+b)(a^2 - ab + b^) = 3(a^3+b^3)
Further
x^2 = a^2 + b^2 + 2ab
y^2 = a^2w^2 + b^2w + 2ab
z^2 = a^2w + b^2w^2 + 2ab
hence z^2+y^2+z ^2 = a^2(1+w+w^2) + b^2(1+w+w^2) + 6ab = 6ab

No comments: