we have $n^{th}$ term = $\frac{\sqrt{n\cdot (n+1)}}{2n+1}$
$= \frac{\sqrt{n^2+n}}{2n+1}$
$= \frac{\sqrt{n^2+n+\frac{1}{4}-\frac{1}{4}}}{2n+1}$
$= \frac{\sqrt{(n+\frac{1}{2})^2-\frac{1}{4}}}{2n+1}$
$ < \frac{n+\frac{1}{2}}{2n+1}$
$ < \frac{1}{2}$
each term is $ < \frac{1}{2}$ and there are 4032 terms so sum is less than 2016
No comments:
Post a Comment