We have
a^2 >= a^2 - (b-c)^2 or a^2 >= (a+b-c)(a-b + c) \cdots(1)
Similarly b^2 >= (b+c-a)(b-c+a)\cdots(2)
and c^2 >= (c+a-b)(c-a+b)\cdots(3)
Multiply (1) , (2) , (3) to get
(abc)^2 >= ((a+b-c) (b+c-a)(c+a-b))^2
or
abc > = (a+b-c)(b+c-a)(c+a-b)\cdots(4)
Applying AM >= GM to a,b,c we get
\frac{a+b+c}{3} >= \sqrt[3]{abc}
or (a+b+c)^3 >= 27abc\cdots(5)
From (4) and (5) we get
(a+b+c)^3 >= 27(a+b-c)(b+c-a) ( c + a - b)
No comments:
Post a Comment