Because a+b, c+a, b+c are in HP
hence
\frac{1}{a+b}, \frac{1}{c+a}, \frac{1}{b+c} are in AP
or
\frac{1}{b+c}-\frac{1}{c+a}= \frac{1}{c+a}-\frac{1}{a+b}
or
\frac{(c+a)-(b+c)}{(b+c)(c+a)}= \frac{(a+b)-(c+a)}{(c+a)(a+b)}
or
\frac{a-b}{(b+c)(c+a)}= \frac{b-c}{(c+a)(a+b)}
or (a-b)(a+b)=(b-c)(b+c)
or a^2-b^2 = b^2 -c^2
or a^2,b^2,c^2 are in AP
No comments:
Post a Comment