Processing math: 100%

Friday, October 18, 2019

2019/015) Let a and b be positive real numbers such that a+b=1. Prove that a^ab^b +a^bb^a <=1

without loss of generality we can assume a>=b
We have
1= a+ b = a^{a+b} + b^{a+b}
so 1- (a^ab^b + a^b b^a)
=  a^{a+b} + b^{a+b} - (a^ab^b + a^b b^a)
= a^a(a^b-b^b) + b^a(b^b-a^b) = (a^a - b^a)(a^b - b^b)
for a > b both the terms are non -ve so we have

1- (a^ab^b + a^b b^a) >=0 and hence the result

No comments: