We have $\sin\,x = \frac{e^{ix}-e^{-ix}}{2i}$
To avoid fraction we have
$2i\sin\,x = e^{ix}-e^{-ix}$
Take power 7
$-128i\sin^7 x = (e^{ix}-e^{-ix})^7 = {7 \choose 0} e^{7ix} - {7 \choose 1} e^{5ix} + {7 \choose 2} e^{3ix} - {7 \choose 3} e^{ix}$
$ + {7 \choose 4} e^{-ix} - {7 \choose 5} e^{-3ix} + {7 \choose 6} e^{-5ix} - {7 \choose 7} e^{-7ix}$
$= {7 \choose 0} e^{7ix} - {7 \choose 1} e^{5ix} + {7 \choose 2} e^{3ix} - {7 \choose 3} e^{ix}$
$ + {7 \choose 3} e^{-ix} - {7 \choose 2} e^{-3ix} + {7 \choose 1} e^{-5ix} - {7 \choose 0} e^{-7ix}$
$= {7 \choose 0} (e^{7ix} - e^ {-7ix}) - {7 \choose 1} (e^{5ix} - e^{-5ix})+ {7 \choose 2} (e^{3ix} - e^{-3ix}) - {7 \choose 3} (e^{ix} - e^{-ix})$
so $-64\sin^7 x = {7 \choose 0} \frac{(e^{7ix} - e^ {-7ix})}{2i} - {7 \choose 1} \frac{(e^{5ix}- e^{-5ix})}{2i} + {7 \choose 2} \frac{(e^{3ix} + e^{-3ix})}{2i} - {7 \choose 3}\frac{ (e^{ix} + e^{-ix})}{2i}$
$= 1 \sin\, 7x - 7 \sin\, 5x + 21 \sin\, 3x - 35 \sin\,x$
or $-64\sin^7 x = 1 \sin\, 7x - 7 \sin\, 5x + 21 \sin\, 3x - 35 \sin\,x$
Hence
$\sin^7 x = - \frac{1}{64} \sin\, 7x +\frac{7}{64}\sin\, 5x - \frac{21}{64}\sin\, 3x + \frac{35}{64} \sin\,x$
No comments:
Post a Comment