We have $a^2+b^2=c^2$
Hence deviding by $a^2b^2$ we get
$\frac{1}{a^2}+ \frac{1}{b^2} = \frac{c^2}{a^2b^2}\cdots(1)$
Now area of the triangle $A = \frac{1}{2}ab\cdots(2)$
If h is the altitude drawn from the right angle to the hypotenuse then area of
the triangle $A = \frac{1}{2}ch\cdots(3)$
So from (2) and (3) ab = ch and putting in (1)
$\frac{1}{a^2}+ \frac{1}{b^2} = \frac{c^2}{a^2b^2} = \frac{c^2}{c^2h^2}= \frac{1}{h^2}$
Or $\frac{1}{a^2}+ \frac{1}{b^2} = \frac{1}{h^2}$
Where h is the altitude drawn from the right angle to the hypotenuse
No comments:
Post a Comment