The $\frac{a}{b}$ equals a. $\frac{n-5}{6}$ b. $\frac{n-4}{5}$ c. $\frac{5}{n-4}$ d. $\frac{6}{n-5}$
Solution:
we have
$5^{th}$ term = ${n \choose 4} a^{n-4} (-b)^4$
$6^{th}$ term = ${n \choose 5} a^{n-5} (-b)^5$
As sum of the two is zero we have ${n \choose 4} a^{n-4} (-b)^4 + {n \choose 5} a^{n-5} (-b)^5 = 0$
or ${n \choose 4} a - {n \choose 5} (b) = 0$
or $\frac{a}{b} = \frac{n \choose 5}{n \choose 4}$
$= \frac{\frac{n!}{5!(n-5)!}}{\frac{n!}{4!(n-4)!}}$
$= \frac{(n-4)!}{(n-5)! 5}= \frac{n-4}{5}$
Hence ans (b)
No comments:
Post a Comment