Loading [MathJax]/extensions/TeX/mathchoice.js

Sunday, March 22, 2020

2020/010) If the binomial expansion of (a-b)n, n≥5, the sum of the 5th and 6th terms is zero.

The \frac{a}{b} equals  a. \frac{n-5}{6} b. \frac{n-4}{5} c. \frac{5}{n-4} d. \frac{6}{n-5} 

Solution:
we have

5^{th} term = {n \choose 4} a^{n-4} (-b)^4
6^{th} term = {n \choose 5} a^{n-5} (-b)^5

As sum of the two is zero we have {n \choose 4} a^{n-4} (-b)^4 + {n \choose 5} a^{n-5} (-b)^5 = 0

or {n \choose 4} a - {n \choose 5} (b) = 0

or \frac{a}{b} = \frac{n \choose 5}{n \choose 4}

= \frac{\frac{n!}{5!(n-5)!}}{\frac{n!}{4!(n-4)!}}

= \frac{(n-4)!}{(n-5)! 5}= \frac{n-4}{5}

Hence ans (b)



No comments: