Let \theta = \frac{\pi}{7}
We need to find \tan^2 \theta + \tan^2 2\theta + \tan^2 3\theta
Now 7\theta = \pi
Now 7\theta = \pi
Or 4\theta = \pi - 3\theta
Taking \tan of both sides we get
Or \tan 4\theta = \tan (\pi - 3\theta) = - \tan 3\theta
Or \frac{4\tan \theta - 4\tan^3 \theta}{1-6\tan ^2 \theta + \tan ^4 \theta} - \frac{3\tan \theta - \tan ^3\theta}{1-3\tan ^2 \theta}
Or \frac{4 - 4\tan^2 \theta}{1-6\tan ^2 \theta + \tan ^4 \theta} + \frac{3 - \tan ^2\theta}{1-3\tan ^2 \theta}
Or (4 - 4\tan^2 \theta)(1-3\tan ^2 \theta) + (1-6\tan ^2 \theta + \tan ^4 \theta)(3 - \tan ^2\theta)
Or 4- 16 \tan ^2 \theta + 12 \tan ^4 \theta + 3 -19 \tan ^2 \theta + 9\tan^4 \theta - \tan ^26\theta = 0
Or \tan ^6\theta - 21\tan ^4 \theta + 35 \tan ^2 \theta -7=0
The above equation is a cubic equation in \tan^2 \theta whose roots are \tan \theta, \tan 2\theta, and
\tan 3\theta,
so using Vieta's formula \tan^2 \theta + \tan^2 2\theta + \tan^2 3\theta= 21
or \tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7}= 21
as a corollary adding 1 to each term of LHS and so adding 3 to RHS we get
\sec^2 \frac{\pi}{7}+ \sec^2 \frac{2\pi}{7} + \sec^2 \frac{3\pi}{7}= 24
No comments:
Post a Comment