We have (n+1)!= (n+1)n!
Taking n^{th} power we have ((n+1)!)^n = ((n+1)n!)^n = (n+1)^n (n!)^n\cdots(1)
Now (n+1)^n > n!\cdots(2)
From (1) and (2) we get ((n+1)!)^n > (n!)^{n+1}
Taking (n(n+1))^{th} root we get \sqrt[n+1]{(n+1)!} > \sqrt[n]{(n)!}
No comments:
Post a Comment