Because a^2 + b^2 = 1 we can take a = \sin\alpha and b = \cos \alpha
Similarly c=\sin \beta and d = \cos\beta
ac + bd = \sin\alpha \sin \beta + \cos \alpha \cos \beta = 0
or \cos (\alpha - \beta) = 0\cdots (1) (using formula of cos of difference)
ab + cd = \sin \alpha \cos \alpha + \sin \beta \cos \beta = \frac{1}{2}(\sin 2 \alpha + \sin 2 \beta) (using formula for sin of twice angle)
= \frac{1}{2} \sin (\alpha + \beta) \cos (\alpha - \beta) using sum of sines
= \frac{1}{2} \sin (\alpha + \beta) * 0 using (1)
= 0
No comments:
Post a Comment