Because $a^2 + b^2 = 1$ we can take $a = \sin\alpha$ and $b = \cos \alpha $
Similarly $c=\sin \beta$ and $d = \cos\beta$
$ac + bd = \sin\alpha \sin \beta + \cos \alpha \cos \beta = 0$
or $\cos (\alpha - \beta) = 0\cdots (1)$ (using formula of cos of difference)
$ab + cd = \sin \alpha \cos \alpha + \sin \beta \cos \beta = \frac{1}{2}(\sin 2 \alpha + \sin 2 \beta)$ (using formula for sin of twice angle)
$= \frac{1}{2} \sin (\alpha + \beta) \cos (\alpha - \beta)$ using sum of sines
$= \frac{1}{2} \sin (\alpha + \beta) * 0$ using (1)
= 0
No comments:
Post a Comment