Friday, October 29, 2021

2021/086) Find the limit of: $lim_{x\to +\infty}\frac{ \lfloor x\rfloor}{x}$

We have

 $\frac{ \lfloor x\rfloor}{x} = \frac{ x- y}{x}$ where y is fractional part of x and hence $0 \le y \lt 1$

Hence 

$  \frac{ \lfloor x\rfloor}{x} =   1- \frac{y}{x} \ge 1 - \frac{1}{x}$

as x goes to infinitte RHS goes to 1 so the required value is between 1 and 1 so it is 1 

No comments: