Processing math: 100%

Friday, October 29, 2021

2021/086) Find the limit of: lim_{x\to +\infty}\frac{ \lfloor x\rfloor}{x}

We have

 \frac{ \lfloor x\rfloor}{x} = \frac{ x- y}{x} where y is fractional part of x and hence 0 \le y \lt 1

Hence 

  \frac{ \lfloor x\rfloor}{x} =   1- \frac{y}{x} \ge 1 - \frac{1}{x}

as x goes to infinitte RHS goes to 1 so the required value is between 1 and 1 so it is 1 

No comments: