we have $\sin^3 x + \cos ^3 x= \frac{1}{\sqrt{2}}$
letting $\sqrt{2} \sin\,x = s$ and $\sqrt{2} \cos\, x = c$
we have $s^3 + c^3 = 2 \sqrt{2} \frac{1}{\sqrt{2}}= 2$
or $s^3 + c^3 = 2\cdots(1)$
and $s^2 + c^2 = 2\cdots(2)$
we are interested to find $\sin\,2x$ or sc
squaring (1) we get $s^6 + c^6 + 2s^3c^3 = 4$
and cubing (2) we get $s^6 + c^6 + 3s^2c^2(s^2 + c^2) = 8$
or $s^6 + c^6 + 6s^2c^2 = 8$
from (3) and (4) we have letting sc = x
$2x^3 - 6x^2 + 4 = 0$
or $x^3 - 3x^2 + 2$ this gives x = 1
and deviding by x-1 for factoring we get $(x-1)(x^2 - 2x -2) = 0$
so x = 1 or $1\pm \sqrt{3}$ but $1 + \sqrt{3}$ being above 1 is not admissible
so x = 1 or $1-\sqrt{3}$
No comments:
Post a Comment