We have
$\frac{2k+1}{(k^2+k)^2} = \frac{(k+1)^2 - k^2}{(k+1)^2 k^2} = \frac{1}{k^2} - \frac{1}{(k+1)^2}$
The above is a telescopic sum and we have
$\sum_{k=1}^n \frac{2k+1}{(k^2+k)^2} = \frac{1}{1} - \frac{1}{(n+1)^2} = .9999$
so $\frac{1}{(n+1)^2} = 1- .9999 = .0001 = \frac{1}{100^2}$
n+ 1 = 100 or n = 99
No comments:
Post a Comment