Processing math: 0%

Sunday, October 16, 2022

2022/067) Find the no of solutions of equation \frac{1}{m} + \frac{1}{n} = \frac{1}{143} where m , n are distinct positive inetegers

 We have \frac{1}{m} + \frac{1}{n} = \frac{1}{143}

or 143n + 143m = mn

or mn - 143m - 143n = 0

this if of the form m(n-143) - 143n = 0

To solve these type of probem add and 143^2 to both sdes to get

 m(n-143) - 143(n- 143)= 143^2

or (m-143)(n-143) = 143^2= 11^2 * 13^2

we get the following pairs as solutions (n-143,n-143) = (1,20449), (11, 1859), (13,1573), (121,169),(143,143), (169,121), (1573,13), (1859,11),(20449.1)

or (n,m) = (144, 20592), (11,2002),(13,1716), (264, 312), (286,286), (312,264),(1716,13),(2002,11),(20592.144)

there are 9 pairs out of which 8 are distinct  

No comments: