We have $\lfloor x \rfloor \le x$ and equal ony of x is integer
so $\lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{3} \rfloor + \lfloor \frac{n}{6} \rfloor \le \frac{n}{2} + \frac{n}{3}+ \frac{n}{6} = n$
so $\lfloor \frac{n}{2} \rfloor = \frac{n}{2}$
$\lfloor \frac{n}{3} \rfloor = \frac{n}{3}$
$\lfloor \frac{n}{6} \rfloor = \frac{n}{6}$
the above is so because if any expression above is not true LHS is less that RHS in any of them shall make the sum < n
so $\frac{n}{2}, \frac{n}{3} ,\frac{n}{6}$ all are ntegers of n is a multiple of 2,3 and 6 that is multiple of LCM(2,3,6) that s 6. so n is of the form 6k
No comments:
Post a Comment