Loading web-font TeX/Math/Italic

Sunday, April 23, 2023

2023/014) Solve in real x, y x^3+x = y^3 + y

We have

 x^3+x = y^3 + y

=>x^3-y^3 + x - y= 0

=>(x-y)(x^2+xy+ y^2)  + (x - y)= 0

=>(x-y)(x^2+xy+ y^2+1) = 0

=> x-y = 0 =>x = y

or x^2+xy+y^2 + 1 = 0

but x^2+xy+y^2  +1 = (x-\frac{y}{2})^2 + \frac{3}{4}y^2 + 1 > 1 which does not have real solution

so solution x = y 

No comments: