Processing math: 100%

Sunday, August 27, 2023

2023/31) Given \frac{2+3z+4z^2}{2-3z+4z^2} \in \mathbb{R} and imaginary part of x is not zero find |z|^2

We have \frac{2+3z+4z^2}{2-3z+4z^2} real 

Both numerator and denominator are expression with 3 terms 

Subtracting 1 fron the expression we shall have it real and numerator is simpler

Or   \frac{2+3z+4z^2}{2-3z+4z^2}-1 is real

Or\frac{-6z}{2-3z+4z^2} is real

As imaglinary part of x is not zero so x is not zero so inverting 

 \frac{2-3z+4z^2}{-6z} is real

Or \frac{2-3z+4z^2}{z} is real

Or \frac{2}{z}-3+4z is real 

And adding 3 we get   \frac{2}{z}+4z is real 

Or \frac{1}{z}+2z is real

Now let z= x+ iy

So \frac{1}{x+iy}+2(x+iy) is real

Or frac{x-iy}{x^+y^2} + 2(x+iy)| is real

Or \frac{-y}{x^+y^2} + 2y)=0

as y is non zero \frac{1}{x^2+y^2} -2=0 or |z|^= \frac{1}{2}  



No comments: