We have
$a+b+c = 1$
So $1+a + b+c = 2$
Or $1+a = 2 - b-c = (1-b)+(1-c)$
because (1-b) and (1-c) are positive using AM GM inequality we have
$(1-b)(a-c) >= 2\sqrt{(1-b)(1-c)}$
or $(1+a) >= 2\sqrt{(1-b)(1-c)}\cdots(1)$
similarly
$(1+b) >= 2\sqrt{(1-c)(1-a)}\cdots(2)$
and
$(1+c) >= 2\sqrt{(1-a)(1-b)}\cdots(3)$
Multiply above 3 equations we get
$(1+a)(1+b)(1+c) >= 8(1-a)(1-b)(1-c)$