Processing math: 100%

Sunday, September 29, 2024

2024/050) If a+b+c =1 for positive numbers a,b c prove that (1+a)(1+b)(1+c) >= 8(1-a)(1-b)(1-c)

We have 

a+b+c = 1

So 1+a + b+c =  2

Or 1+a = 2 - b-c = (1-b)+(1-c)

because (1-b) and (1-c) are positive using AM GM inequality we have

(1-b)(a-c) >= 2\sqrt{(1-b)(1-c)}

or (1+a) >= 2\sqrt{(1-b)(1-c)}\cdots(1)

similarly 

(1+b) >= 2\sqrt{(1-c)(1-a)}\cdots(2)

and

(1+c) >= 2\sqrt{(1-a)(1-b)}\cdots(3)

Multiply above 3 equations we get

 (1+a)(1+b)(1+c) >= 8(1-a)(1-b)(1-c)


No comments: