Wednesday, October 22, 2025

2025/026) prove $a(b-c)^2 +b(c-a)^2+c(a-b)^2+8abc=$ $(a+b) (b+c) (c+a)$

 We have as on RHS (a+b) we can add 4abc to the 3rd term to get (a+b) as a factor and add 2abc to 1st and 2nd term that is distributing 8abc to get

 $a(b-c)^2 +b(c-a)^2+c(a-b)^2+8abc$ 

$=a((b-c)^2 +2bc)+b((c-a)^2+2ac)+c((a-b)^2+4ab)$

 $=a((b^2+c^2)+b((c^2+a^2))+c(a+b)^2$

 $=ab^2+ac^2+bc^2+ba^2+c(a+b)^2$

  $=ab^2+ba^2+ac^2+bc^2+c(a+b)^2$

$=ab(a+b) + c^2(a+b) + c(a+b)^2$

$=(a+b)(ab+c^2 + c(a+b)$

$=(a+b) (c^2 + ca + bc + ab)$

$= (a+b)(b+c)(c+a)$ 

 

Friday, October 17, 2025

2025/025) How many numbers (n) are there between 1 and 200 such that $\frac{n}{2}$ , $\frac{n}{3}$ ,$\frac{2n+1}{5}$ are all composite natural numbers (CAT 2020)?

First let us find the number such that $\frac{n}{2}$ ,  $\frac{n}{3}$ ,$\frac{2n+1}{5}$ are integers

as  $\frac{n}{2}$ ,  $\frac{n}{3}$ are integers so $\frac{n}{6}$ is integer say k

so n= 6k

As in denominator we have 2 3 and 5 so we should have mod 30

take k from 0 to 5 we get n = 12 satisfies  $\frac{2n+1}{5}$ integer

so we get values n =12 , 42, 72, 102,132,162,192 .

as n is multiple of 6 $\frac{n}{2}$ ,  $\frac{n}{3}$ are composite we need to check   $\frac{2n+1}{5}$ composite . let us compute $\frac{2n+1}{5}$

n = 12 gives 5 so no

n = 42 gives 17 so no

n = 72 gives 29 no

n =  102 gives 41 no

n = 132 gives 53 no

 n = 162 gives 65 yes

n = 192 gives 77 yes

so there are 2 values  

 

 

 

Monday, October 13, 2025

2025/024) show that $3^{(2n + 1)}+ 2^{(n + 2)}$ is dvisible by 7

we have 

 $3^{(2n + 1)}+ 2^{(n + 2)}$

 $=3 *3^{2n}+ 4 *2^{n}$ 

 $=3 *3^{2n}+ 4 *2^{n}$

 $=3 *9^{n}+ 4 *2^{n}$  

 $=3 *2^{n}+ 4 *2^{n}$  as $9 \equiv 2 \pmod 7$

 $=(3 + 4) *2^{n}$  

  $= 7 *2^{n}$  divisible by 7