Saturday, February 7, 2026

2026/016) Find all solutions of the linear congruence $3x−7y \equiv 11 \pmod {13}$

We have as 13 is a prime number we can choose any value of a x and the choose y in terms of x

We have $7y \equiv  3x -11  \pmod  {13}$

Now 7 needs to be multiplied by its inverse to get coefficient of y as 1 so multiplying by 2 (inverse of 7) we get

$y \equiv  6x - 22 \pmod  {13}$

Or   $y \equiv 6x-9  \pmod {13} $

For x = 0 to 12 mod 13 we get corresponding  value of y 

No comments: