Prove that product of two numbers, each of which can be expressed as sum of two squares, can itself be expressed as sum of two squares.
Let 1st number be a^2+b^2 and second be c^2 + d^2
one way
(a^2+b^2)(c^2+d^2)
= (a^2c^2 + b^2 d^2 + a^2d^2 + b^2 c^2)
= (a^2c^2 + b^2 d^2 + 2 abcd + a^2d^2 + b^2 c^2- 2abcd)
= (ac+bd)^2 + ( ad - bc)^2
also
(a^2+b^2)(c^2+d^2)
= (a^2c^2 + b^2 d^2 + a^2d^2 + b^2 c^2)
= (a^2c^2 + b^2 d^2 - 2 abcd + a^2d^2 + b^2 c^2+ 2abcd)
= (ac-bd)^2 + ( ad + bc)^2
so we can do in two different ways
further we can prove using complex numbers
(a^2+b^2)(c^2+d^2) = | a + ib|^2 |c + id|^2
= | (a + ib)( c+ id)| ^ 2
= | (ac - bd) + (ad +bc) i | ^2
= (ac-bd)^2 + (ad + bc)^2
and taking (a^2+b^2)(c^2+d^2) = | a + ib|^2 |c - id|^2
we get (ac+bd)^2 + (ad - bc)^2
No comments:
Post a Comment