Processing math: 100%

Wednesday, May 18, 2011

2011/043) find limit \lim_{n\to\infty} \sqrt[n]{3^n+4^n}

We can we take 3 or 4 out but taking 3 it diverges

we get 3 \sqrt[n]{1^n+(\frac{4}{3})^n} and reach no where

taking 4 we get
4 \sqrt[n]{1^n+(\frac{3}{4})^n}

now 1 < 1+(\frac{3}{4})^n < 2

so  \sqrt[n]{1} < \sqrt[n]{1+(\frac{3}{4})^n} < \sqrt[n]{2} and as \sqrt[n]{2} as n goes to infinite goes to 1

so result = 4 * 1 or 4.

No comments: