Saturday, May 21, 2011

2011/044) show that $\sin \frac{\pi}{14} \sin \frac{3\pi}{14} \sin\frac{5\pi}{14} = \frac{1}{8}$

LHS
$= \sin \frac{\pi}{14} \cos (\frac{\pi}{2} -\frac{3\pi}{14}) \cos(\frac{\pi}{2} -\frac{5\pi}{14})$
$= \sin \frac{\pi}{14} \cos (\frac{4\pi}{14})  \cos (\frac{2 \pi}{14})$
$= \sin \frac{\pi}{14} \cos (\frac{2\pi}{14})  \cos (\frac{4 \pi}{14})$
$= \dfrac{\cos \frac{\pi}{14} \sin \frac{\pi}{14} \cos (\frac{2\pi}{14})  \cos (\frac{4 \pi}{14})}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{2}\frac{\sin \frac{2\pi}{14} \cos (\frac{2\pi}{14})  \cos (\frac{4 \pi}{14})}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{4}\dfrac{\sin \frac{4\pi}{14}  \cos (\frac{4 \pi}{14})}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{8}\dfrac{\sin \frac{8\pi}{14}}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{8}\dfrac{\sin(\pi -  \frac{8\pi}{14})}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{8}\dfrac{\sin(\frac{6\pi}{14}}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{8}\dfrac{\cos(\frac{\pi}{2} -  \frac{6\pi}{14})}{\cos \frac{\pi}{14}} $
$=\dfrac{1}{8}\dfrac{\cos(\frac{\pi}{2} -  \frac{6\pi}{14})}{\cos \frac{\pi}{14}} $
 $=\dfrac{1}{8}\frac{\cos \frac{\pi}{14}}{\cos \frac{\pi}{14}} $
$=\frac{1}{8}$

edited the above based on the comment to keep the flow

5 comments:

Anonymous said...

Is there a problem in typing,in 4the line that used sin instead of cos.

the answer is correct.

Anonymous said...

I spent a long time but could not solve this from the original Loney book. Nice and clean solution ! good job.

Unknown said...

im 15 and my teacher give me to solve 124knuifas problems like that, but when i se ,,pi"-omfg,im dead.

RavindraSai-IIT maths said...

Good solution

Unknown said...

Good Job Well Done......