We have √ (n+1) - √n = 1/(√(n+1) +
√n)… (1)
And √(n) - √(n-1) = 1/(√(n + √(n-1)) …2
As
1/(√(n+1) + √n) < 1/(√(n + √(n-1)) ( as
denominator of LHS is larger)
So √ (n+1) - √n < √(n) - √(n-1)
So √ (n+1) + √(n-1)
< 2√(n)
Putting n = 1000 we get
√1001 + √+999 < 2 √1000
or 2 √1000 is larger
No comments:
Post a Comment