We have cos ^-1 x = sin ^-1 ( 1-4x^2)^(1/2)
now given equation
sin ^-1(x) = π/6 – cos ^-1(2x)
take sin of both
sides
x = sin (π/6) cos cos ^-1(2x) - cos (π/6)
sin cos ^-1(2x)
or x = ½ * 2x – sqrt(3)/2 * (1- 4x^2)^(1/2) =
x - sqrt(3)/2 * (1- 4x^2)^(1/2
or * (1- 4x^2)^(1/2) = 0 => x = +/- ½
One can check by putting the values x = ½
satisfies and -1/2 does not.
So solution = x =1/2
No comments:
Post a Comment