Sunday, October 13, 2013

Q13/104) Let a,b,c be the roots of x3−7x2−6x+5=0. Compute (a+b)(a+c)(b+c).



Let f(x) = x^3- 7x^2 – 6x + 5
now a+ b+c = 7 so a +b = 7-c, b+c = 7-a, a + c = 7- b
so (a+b)(a+c)(b+c) = (7-c)(7-b)(7-a)
again as a, b,c are roots
f(x) = (x-a)(x-b)(x-c)
so (a+b)(a+c)(b+c) = (7-c)(7-b)(7-a) = f(7) = 7^3 – 7 * 7^2 – 6*7 + 5 = - 37

No comments: