We have (a^3-b^3) = (a-b)(a^2+ab+b^2)
We need to show that (a^2+ab+b^2) > 0
We have a^2 + ab + b ^2 = (a-b)^2 + 3ab … (1)
a^2 + ab + b ^2 = (a+b)^2 – ab … (2)
as a > b if a or b is zero from (1) or (2) a^2 + ab + b^2
> 0
if ab > 0 then from (1) a^2 + ab + b ^2 > 0
and if ab < 0 then from (2) a^2 + ab + b ^2 > 0
from above we have
the result
No comments:
Post a Comment