Processing math: 100%

Friday, August 29, 2014

2014/071) prove \cot \ 7\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3}+\sqrt{4} + \sqrt{6}

we have

\cos\ 15^\circ = \cos(60- 45)^\circ =  \cos\ 60^\circ \cos\ 45^\circ +  \sin \ 60^\circ \sin\ 45^\circ
= \dfrac{1}{2}\dfrac{1}{\sqrt{2}} + \dfrac{\sqrt{3}}{2}\dfrac{1}{\sqrt{2}}
= \dfrac{1}{4}(\sqrt{2} + \sqrt{6})
also
\sin \ 15^\circ = \sin (60- 45)^\circ =  \sin \ 60^\circ \cos\ 45^\circ -  \cos  \ 60^\circ \sin\  45^\circ
= \dfrac{\sqrt{3}}{2}\dfrac{1}{\sqrt{2}} - \dfrac{1}{2}\dfrac{1}{\sqrt{2}}
= \dfrac{1}{4}(\sqrt{6} - \sqrt{2})

now \cot\ x= \dfrac{\cos\ x }{\sin \ x} = \dfrac{2\cos^2\ x }{2\sin \ x\cos \ x}
= \dfrac{1+\cos 2x}{\sin 2x}

  Hence \cot \ 7\frac{1}{2}^\circ = \dfrac{1+\cos\ 15^\circ}{\sin\ 15^\circ}
= \dfrac{1+\dfrac{1}{4}(\sqrt{2} + \sqrt{6})}{\dfrac{1}{4}(\sqrt{6} - \sqrt{2})}
\dfrac{4+(\sqrt{2} + \sqrt{6})}{(\sqrt{6} - \sqrt{2})}
= \dfrac{4+(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})}
= \dfrac{4(\sqrt{6} + \sqrt{2})+(\sqrt{6} + \sqrt{2})^2}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})}
\dfrac{4(\sqrt{6} + \sqrt{2})+(\sqrt{6} + \sqrt{2})^2}{4}
(\sqrt{6} + \sqrt{2})+\dfrac{(\sqrt{6} + \sqrt{2})^2}{4}
(\sqrt{6} + \sqrt{2})+\dfrac{6 + 2 + 4 \sqrt{3}}{4}
(\sqrt{6} + \sqrt{2})+\dfrac{8 + 4 \sqrt{3}}{4}
(\sqrt{6} + \sqrt{2})+  2 +  \sqrt{3}
\sqrt{2} + \sqrt{3})+  2 +  \sqrt{6}
\sqrt{2} + \sqrt{3})+\sqrt{4} + \sqrt{6}

No comments: