$2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$
= $\cos \dfrac{\pi}{7}(2\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}-1)$
= - $\cos \dfrac{\pi}{7}(\cos \dfrac{\pi}{7} - (2\cos^2 \dfrac{\pi}{7}-1))$
= - $\cos \dfrac{\pi}{7}(\cos \dfrac{\pi}{7} - \cos \dfrac{2\pi}{7})$
= -$ 2 \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{14}$
= -$\dfrac{ 2 \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{14} \cos \dfrac{\pi}{14}}{ \cos \dfrac{\pi}{14}}$
= -$\dfrac{ \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{7}}{ \cos \dfrac{\pi}{14}}$
= -$\dfrac{ 2\cos \dfrac{\pi}{7}\sin \dfrac{\pi}{7} \sin\dfrac{3\pi}{14}}{2 \cos \dfrac{\pi}{14}}$
= -$\dfrac{ \sin \dfrac{2\pi}{7} \sin\dfrac{3\pi}{14}}{2 \cos \dfrac{\pi}{14}}$
=- $\dfrac{ \sin \dfrac{2\pi}{7} \cos (\dfrac{\pi}{2} - \dfrac{3\pi}{14})}{2 \cos \dfrac{\pi}{14}}$
= - $\dfrac{ \sin \dfrac{2\pi}{7} \cos \dfrac{2\pi}{7}}{2 \cos \dfrac{\pi}{14}}$
= - $\dfrac{ 2 \sin \dfrac{2\pi}{7} \cos \dfrac{2\pi}{7}}{4 \cos \dfrac{\pi}{14}}$
= -$\dfrac{ \sin \dfrac{4\pi}{7}}{4 \cos \dfrac{\pi}{14}}$
= - $\dfrac{ \cos( \dfrac{\pi}{2}- \dfrac{4\pi}{7})}{4 \cos \dfrac{\pi}{14}}$
= -$\dfrac{ \cos \dfrac{-\pi}{14}}{4 \cos \dfrac{\pi}{14}}$
= - $\dfrac{ \cos \dfrac{\pi}{14}}{4 \cos \dfrac{\pi}{14}}$
= - $\dfrac{1}{4}$
No comments:
Post a Comment