Processing math: 100%

Saturday, November 8, 2014

2014/102) show that \lfloor(\sqrt{n} +\sqrt{n+1}\rfloor= \lfloor(\sqrt{4n+2}\rfloor


we realise that n(n+1) = (n+\dfrac{1}{2})^2 - \dfrac{1}{4}
so \sqrt{n(n+1)}\lt(n+\dfrac{1}{2})
clearly n\lt\sqrt{n(n+1)}

so

we have
(\sqrt{n} + \sqrt{n+1})^2 = n + n+ 1 + 2 \sqrt{n(n+1)}
= 2n +1 + 2 \sqrt{n(n+1)}
>2n+ 1 + 2 n or > 4n+ 1

and = 2n +1 + 2 \sqrt{n(n+1)}2n +1 + 2 (n + \dfrac{1}{2})
or <  (4n + 2)
so (4n+1)\lt(\sqrt{n} + \sqrt{n+1})^2\lt(4n+2)

because  4n+2 is not a perfect square

we have \lfloor(\sqrt{4n+1}\rfloor = \lfloor(\sqrt{4n+2}\rfloor
and as (\sqrt{n} + \sqrt{n+1})^2 is between 4n + 1 and 4n +2 we have

\lfloor(\sqrt{4n+1}\rfloor = \lfloor(\sqrt{4n+2}\rfloor= \lfloor(\sqrt{n} +\sqrt{n+1}\rfloor

No comments: