Processing math: 4%

Friday, January 9, 2015

2015/003) If X and Y are real root for the equations x^3+3x^2+6x+20=0 and y^3+6y^2+15y-2=0, find the sum of X and Y

Now let
P(x) = x^3+3x^2+6x+20 and
G(y) = y^3+6y^2+15y-2=0

now let us check for p(x)

to eliminate the x^2 term I put x -1 to get
P(x-1) = (x-1)^3 + 3(x-1)^2 + 6(x-1) + 20
= x^3-3x^2+ 3x - 1 + 3x^2 - 6x + 3 + 6x - 6 + 20
= x^3 + 3x + 16

now let us check for g(y)
to eliminate the y^2 term I put y -2 to get
G(y-2) =(y-2)^3+6(y-2)^2+15(y-2)-2
=y^3 - 6y^2 + 12y - 8 + 6y^ - 24y + 24 + 15y - 30 - 2
=y^3 + 3y - 16

now if we put R(x) = x^3 + 3x - 16 then we get
P(x-1) = R(x) 
G(y-2) = - R(-y)

or P(x) = R(x+1) and G(y) = - R(y + 2)

so both are same and odd functions so
for the zeros of P and G the 2 values shall be -ve of each other hence

X + 1 = - (Y +2) or  X + Y  = - 3

I had solved incorrectly at http://mathhelpboards.com/challenge-questions-puzzles-28/find-x-y-13744.html#post65445.

No comments: