Processing math: 100%

Thursday, February 26, 2015

2015/020) If (x+yi)^3 = u + vi Prove that \dfrac{u}{x} + \dfrac{v}{y} = 4(x^2 - y^2)

(x+yi)^3 = u + vi
expand LHS

x^3 + 3ix^2 y - 3 xy^2 - iy^3 = (x^3 - 3y^2) + i(3x^2y - y^3)
= x(x^2- 3y^2) + iy(3x^2 - y^2)

equate real part on both sides and imaginary parts

to get u = x(x^2-3y^2)
v = y(3x^2-y^2)

so \dfrac{u}{x} + \dfrac{v}{y}= (x^2-3y^2) + (3x^2-y^2) = 4x^2 - 4y^2

No comments: